Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Laryngoscope ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991177

RESUMO

OBJECTIVES: This study evaluated the use of lidocaine spray for acute postsurgical pain control after posterior pharyngeal flap surgery. METHODS: Fifty patients aged 4 to 14 years who were scheduled to undergo elective posterior pharyngeal flap surgery were randomized to receive 2.4% lidocaine spray (Group L) or an identical volume of placebo spray (Group C) on the surgical field at the end of the surgery. The primary outcome was the maximum postoperative pain score in the postanesthesia care unit. RESULTS: The maximum pain score in Group L was significantly lower than that in Group C (p = 0.001). The incidence of moderate-to-severe pain in the postanesthesia care unit was significantly lower in Group L than that in Group C (p < 0.001). In the postanesthesia care unit, more patients in Group C were prescribed rescue analgesics (p < 0.001). The time to the first rescue analgesic was also significantly shorter in Group L (p < 0.001). The incidence and maximum score of emergence agitation were lower in Group L than in Group C. Compared with Group C, Group L showed earlier postoperative fluid intake (p = 0.001). Moreover, the score for parental satisfaction with pain control was higher in Group L than in Group C (p < 0.001). CONCLUSIONS: Our findings indicated that the use of 2.4% lidocaine aerosol spray on the surgical site at the end of the surgery could produce good analgesia for acute postoperative pain, reduce the incidence and severity of EA, and shorten the time to restore fluid intake. LEVEL OF EVIDENCE: 2 Laryngoscope, 2023.

2.
Anesth Analg ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478025

RESUMO

BACKGROUND: Emergence agitation (EA) is an adverse complication during early recovery from sevoflurane anesthesia. Continuous intravenous infusion of dexmedetomidine (DEX) is commonly used for EA prevention. However, a wide dose range is used for preventing EA, and the optimal dose remains unknown. This study was aimed at determining the optimal dose (the 90% effective dose [ED90]) of DEX for continuous intraoperative infusion for EA prevention in children. METHODS: We enrolled children aged 3 to 7 years who underwent dental treatment under sevoflurane anesthesia. DEX was continuously infused from the time of the establishment of the intravenous access until 5 minutes before the end of surgery. The initial DEX dose was 0.5 µg/kg/h, and subsequent dose adjustments were determined based on the response of the previous patient by using an up-down sequential allocation with a biased-coin design. The primary outcome was the ED90 for continuous DEX infusion based on the success or failure of the EA-preventing dose. RESULTS: Forty-five patients were enrolled in the study. The DEX dose ranged from 0.50 to 0.90 µg/kg/h. The estimated ED90 (95% confidence interval [CI]) for preventing EA was 0.74 µg/kg/h (0.67-1.05 µg/kg/h). The duration of surgery (mean ± standard deviation [SD]) was 113 ± 30 minutes. The times (mean ± SD) for extubation, time to emergence, and recovery time were 5 ± 2 minutes, 27 ± 9 minutes, and 39 ± 7 minutes, respectively. CONCLUSIONS: The ED90 for continuous intraoperative DEX infusion for EA prevention in pediatric patients receiving dental treatment under sevoflurane anesthesia was 0.74 µg/kg/h (95% CI, 0.67-1.05 µg/kg/h).

3.
Biochem Biophys Res Commun ; 671: 87-95, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37300945

RESUMO

Stroke is the leading cause of death and long-term disability worldwide. But treatments are not available to promote functional recovery, and efficient therapies need to be investigated. Stem cell-based therapies hold great promise as potential technologies to restore function in brain disorders. Loss of GABAergic interneurons after stroke may result in sensorimotor defects. Here, by transplanting human brain organoids resembling the MGE domain (human MGE organoids, hMGEOs) derived from human induced pluripotent stem cells (hiPSCs) into the infarcted cortex of stroke mice, we found that grafted hMGEOs survived well and primarily differentiated into GABAergic interneurons and significantly restored the sensorimotor deficits of stroke mice for a long time. Our study offers the feasibility of stem cell replacement therapeutics strategy for stroke.


Assuntos
Células-Tronco Pluripotentes Induzidas , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Células-Tronco Pluripotentes Induzidas/fisiologia , Acidente Vascular Cerebral/terapia , Encéfalo , Interneurônios , Diferenciação Celular
4.
NPJ Regen Med ; 8(1): 27, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253754

RESUMO

Stroke usually causes prolonged or lifelong disability, owing to the permanent loss of infarcted tissue. Although a variety of stem cell transplantation has been explored to improve neuronal defect behavior by enhancing neuroplasticity, it remains unknown whether the infarcted tissue can be reconstructed. We here cultured human cerebral organoids derived from human pluripotent stem cells (hPSCs) and transplanted them into the junction of the infarct core and the peri-infarct zone of NOD-SCID mice subjected to stroke. Months later, we found that the grafted organoids survived well in the infarcted core, differentiated into target neurons, repaired infarcted tissue, sent axons to distant brain targets, and integrated into the host neural circuit and thereby eliminated sensorimotor defect behaviors of stroke mice, whereas transplantation of dissociated single cells from organoids failed to repair the infarcted tissue. Our study offers a new strategy for reconstructing infarcted tissue via organoids transplantation thereby reversing stroke-induced disability.

5.
J Affect Disord ; 333: 181-192, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080493

RESUMO

BACKGROUND: The basolateral amygdala (BLA) neurons are primarily glutamatergic and have been associated with emotion regulation. However, little is known about the roles of BLA neurons expressing neuronal nitric oxide synthase (nNOS, Nos1) in the regulation of emotional behaviors. METHODS: Using Nos1-cre mice and chemogenetic and optogenetic manipulations, we specifically silenced or activated Nos1+ or Nos1- neurons in the BLA, or silenced their projections to the anterdorsal bed nucleus of the stria terminalis (adBNST) and ventral hippocampus (vHPC). We measured anxiety behaviors in elevated plus maze (EPM) and open-field test (OFT), and measured depression behaviors in forced swimming test (FST) and tail suspension test (TST). RESULTS: BLA Nos1+ neurons were predominantly glutamatergic, and glutamatergic but not GABAergic Nos1+ neurons were involved in controlling anxiety- and depression-related behaviors. Interestingly, by selectively manipulating the activities of BLA Nos1+ and Nos1- excitatory neurons, we found that they had opposing effects on anxiety- and depression-related behaviors. BLA Nos1+ excitatory neurons projected to the adBNST, this BLA-adBNST circuit controlled the expression of anxiety- and depression-related behaviors, while BLA Nos1- excitatory neurons projected to vHPC, this BLA-vHPC circuit contributed to the expression of anxiety- and depression-related behaviors. Moreover, excitatory vHPC-adBNST circuit antagonized the role of BLA-adBNST circuit in regulating anxiety- and depression-related behaviors. CONCLUSIONS: BLA Nos1+ and Nos1- excitatory neuron subpopulations exert different effects on anxiety- and depression-related behaviors through distinct projection circuits, providing a new insight of BLA excitatory neurons in emotional regulation. LIMITATIONS: We did not perform retrograde labeling from adBNST and vHPC regions.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Depressão , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Ansiedade , Neurônios/metabolismo
6.
Cell Rep ; 42(4): 112294, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36947544

RESUMO

Stroke is a leading cause of adult disability worldwide, and better drugs are needed to promote functional recovery after stroke. Growing evidence suggests the critical role of network excitability during the repair phase for stroke recovery. Here, we show that ß-hydroxybutyrate (ß-HB), an essential ketone body (KB) component, is positively correlated with improved outcomes in patients with stroke and promotes functional recovery in rodents with stroke during the repair phase. These beneficial effects of ß-HB depend on HDAC2/HDAC3-GABA transporter 1 (GAT-1) signaling-mediated enhancement of excitability and phasic GABA inhibition in the peri-infarct cortex and structural and functional plasticity in the ipsilateral cortex, the contralateral cortex, and the corticospinal tract. Together with available clinical approaches to elevate KB levels, our results offer a clinically translatable means to promote stroke recovery. Furthermore, GAT-1 can serve as a pharmacological target for developing drugs to promote functional recovery after stroke.


Assuntos
Corpos Cetônicos , Acidente Vascular Cerebral , Humanos , Proteínas da Membrana Plasmática de Transporte de GABA
7.
Acta Pharmacol Sin ; 44(5): 954-968, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36460834

RESUMO

Chronic pain patients often have anxiety disorders, and some of them suffer from anxiety even after analgesic administration. In this study, we investigated the role of AMPAR-mediated synaptic transmission in the ventromedial prefrontal cortex (vmPFC) in chronic pain-induced persistent anxiety in mice and explored potential drug targets. Chronic inflammatory pain was induced in mice by bilateral injection of complete Freund's adjuvant (CFA) into the planta of the hind paws; anxiety-like behaviours were assessed with behavioural tests; S-nitrosylation and AMPAR-mediated synaptic transmission were examined using biochemical assays and electrophysiological recordings, respectively. We found that CFA induced persistent upregulation of AMPAR membrane expression and function in the vmPFC of anxious mice but not in the vmPFC of non-anxious mice. The anxious mice exhibited higher S-nitrosylation of stargazin (an AMPAR-interacting protein) in the vmPFC. Inhibition of S-nitrosylation by bilaterally infusing an exogenous stargazin (C302S) mutant into the vmPFC rescued the surface expression of GluA1 and AMPAR-mediated synaptic transmission as well as the anxiety-like behaviours in CFA-injected mice, even after ibuprofen treatment. Moreover, administration of ZL006, a small molecular inhibitor disrupting the interaction of nNOS and PSD-95 (20 mg·kg-1·d-1, for 5 days, i.p.), significantly reduced nitric oxide production and S-nitrosylation of AMPAR-interacting proteins in the vmPFC, resulting in anxiolytic-like effects in anxious mice after ibuprofen treatment. We conclude that S-nitrosylation is necessary for AMPAR trafficking and function in the vmPFC under chronic inflammatory pain-induced persistent anxiety conditions, and nNOS-PSD-95 inhibitors could be potential anxiolytics specific for chronic inflammatory pain-induced persistent anxiety after analgesic treatment.


Assuntos
Ansiedade , Dor Crônica , Córtex Pré-Frontal , Receptores de Glutamato , Animais , Camundongos , Ansiedade/etiologia , Ansiedade/metabolismo , Transtornos de Ansiedade , Dor Crônica/complicações , Dor Crônica/metabolismo , Ibuprofeno , Córtex Pré-Frontal/metabolismo , Transmissão Sináptica , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Inflamação/complicações , Inflamação/metabolismo
8.
BMC Anesthesiol ; 22(1): 360, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424554

RESUMO

BACKGROUND: Patients undergoing oral and maxillofacial surgeries under general anesthesia usually require nasotracheal intubation. When presented with patients with equally patent nostrils, selection of the nostril to use for intubation is an important decision for facilitating intubation. The objective of this trial is to determine whether choice of nostril impacts nasotracheal intubation when using a video rigid stylet in patients undergoing oral and maxillofacial surgery. METHODS: Fifty patients scheduled for elective oral and maxillofacial surgery requiring nasotracheal intubation were randomly allocated into two groups to undergo nasotracheal intubation through the left nostril (Group L, n = 25) or the right nostril (Group R, n = 25). Intubation was performed by experienced anesthesiologists using a video rigid stylet. The primary endpoint was time to successful intubation, which was defined as the duration from when the tip of the stylet-tube assembly entered the selected nostril to when the tube entered the trachea. Secondary outcomes included: length of time for device insertion; length of time for tube insertion; total success rate; first-attempt success rate; number of intubation attempts; requirement of airway assisted maneuvers; incidence and severity of epistaxis. Intubation-related adverse events were monitored for up to postoperative 24 h. RESULTS: Median time (interquartile range) to tracheal intubation was 25.3 seconds (20.7 to 27.6) in Group L and 26.8 seconds (22.5 to 30.0) in Group R (median difference (MD) = 1.9; 95% confidence interval (CI) -1.8 to 5.7, P = 0.248). Nasotracheal intubation was successful in all patients in both groups and the first-attempt success rates in both groups were similar (Group L: 96% (24/25); Group R: 96% (24/25); relative risk (RR) 1.0; 95% CI 0.9 to 1.1; P > 0.999). No significant difference of requirement of assisted maneuvers was noted between the two groups (Group L: 36% (9/25); Group R: 28% (7/25); RR 0.8; 95% CI 0.3-1.8; P = 0.544). Furthermore, all patients showed a high quality of visualization of the glottis (Cormack and Lehane Grade I). For safety outcomes, the incidence and severity of epistaxis during intubation was comparable between the two groups. There were no significant differences between the selection of nostrils and intubation-related adverse events up to 24 h after surgery. CONCLUSIONS: When considering which nostril to use for intubation with video rigid stylet, either nostril can be used similarly. TRIAL REGISTRATION: Clinicaltrials.gov . Identifier: NCT05218590.


Assuntos
Epistaxe , Intubação Intratraqueal , Humanos , Epistaxe/etiologia , Traqueia , Glote , Anestesia Geral
9.
Elife ; 112022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876665

RESUMO

During eukaryotic cell division, chromosomes are linked to microtubules (MTs) in the spindle by a macromolecular complex called the kinetochore. The bound kinetochore microtubules (KMTs) are crucial to ensuring accurate chromosome segregation. Recent reconstructions by electron tomography (Kiewisz et al., 2022) captured the positions and configurations of every MT in human mitotic spindles, revealing that roughly half the KMTs in these spindles do not reach the pole. Here, we investigate the processes that give rise to this distribution of KMTs using a combination of analysis of large-scale electron tomography, photoconversion experiments, quantitative polarized light microscopy, and biophysical modeling. Our results indicate that in metaphase, KMTs grow away from the kinetochores along well-defined trajectories, with the speed of the KMT minus ends continually decreasing as the minus ends approach the pole, implying that longer KMTs grow more slowly than shorter KMTs. The locations of KMT minus ends, and the turnover and movements of tubulin in KMTs, are consistent with models in which KMTs predominately nucleate de novo at kinetochores in metaphase and are inconsistent with substantial numbers of non-KMTs being recruited to the kinetochore in metaphase. Taken together, this work leads to a mathematical model of the self-organization of kinetochore-fibers in human mitotic spindles.


Assuntos
Cinetocoros , Fuso Acromático , Segregação de Cromossomos , Cromossomos , Humanos , Metáfase , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo
10.
Neurotox Res ; 40(2): 485-497, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35294710

RESUMO

Fetal exposure to inhaled anesthetics, such as isoflurane, may lead to neurodevelopmental impairment in offspring. Yet, the mechanisms of prenatal isoflurane-induced developmental neurotoxicity have not been fully elucidated. Gut microbiota is a pivotal modulator of brain development and functions. While the antibiotic effect of isoflurane has been previously investigated, the relationship between prenatal isoflurane exposure and postnatal gut microbiota, brain biology, and behavior remains unknown. In the present study, we treated pregnant rats with 2% isoflurane for 4 h on gestational day 14. Their offspring were tested with novel object recognition task on postnatal day 28 (P28) to assess cognition. Fecal microbiome was assessed using 16S RNA sequencing. We also analyzed hippocampal expression of brain-derived neurotrophic factor (BDNF) in P28 rat brains. To further explore the role of gut microbiota on prenatal isoflurane-induced developmental neurotoxicity, we treated rats with mixed probiotics on P14 for 14 days and evaluated novel object recognition and hippocampal expression of BDNF on P28. Results indicate that prenatal exposure to isoflurane significantly decreased novel object recognition (novel object preference ratio: mean difference (MD) - 0.157; 95% confidence interval (CI) - 0.234 to - 0.080, P < 0.001) paralleled by diminished expression of hippocampal BDNF in juvenile rats. Prenatal exposure to isoflurane also significantly altered the diversity and composition of gut microbiota. Treatment with probiotics mitigated these changes in cognition (novel object preference ratio: isoflurane group vs. control group: MD - 0.177; 95% CI - 0.307 to - 0.047, P = 0.006; probiotic group vs. isoflurane group: MD 0.140; 95% CI 0.004 to 0.275, P = 0.042) and BDNF expression. Taken together, our findings suggest that gut dysbiosis may be involved in the pathogenesis of maternal isoflurane exposure-induced postnatal cognitive impairment. To determine the causal relationship between gut microbiota and cognition in prenatal anesthetic-induced developmental neurotoxicity, further studies are needed.


Assuntos
Microbioma Gastrointestinal , Isoflurano , Síndromes Neurotóxicas , Efeitos Tardios da Exposição Pré-Natal , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Isoflurano/toxicidade , Síndromes Neurotóxicas/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos
11.
Mol Psychiatry ; 26(11): 6506-6519, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931732

RESUMO

Exposure therapy based on the extinction of fear memory is first-line treatment for post-traumatic stress disorder (PTSD). However, fear extinction is relatively easy to learn but difficult to remember, extinguished fear often relapses under a number of circumstances. Here, we report that extinction learning-induced association of neuronal nitric oxide synthase (nNOS) with its carboxy-terminal PDZ ligand (CAPON) in the infralimbic (IL) subregion of medial prefrontal cortex negatively regulates extinction memory and dissociating nNOS-CAPON can prevent the return of extinguished fear in mice. Extinction training significantly increases nNOS-CAPON association in the IL. Disruptors of nNOS-CAPON increase extracellular signal-regulated kinase (ERK) phosphorylation and facilitate the retention of extinction memory in an ERK2-dependent manner. More importantly, dissociating nNOS-CAPON after extinction training enhances long-term potentiation and excitatory synaptic transmission, increases spine density in the IL, and prevents spontaneous recovery, renewal and reinstatement of remote fear of mice. Moreover, nNOS-CAPON disruptors do not affect other types of learning. Thus, nNOS-CAPON can serve as a new target for treating PTSD.


Assuntos
Extinção Psicológica , Medo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ligantes , Camundongos , Óxido Nítrico Sintase Tipo I/metabolismo
12.
Theranostics ; 11(12): 5970-5985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897893

RESUMO

Overactivation of N-methyl-D-aspartate receptor (NMDAR) in the spinal cord dorsal horn (SDH) in the setting of injury represents a key mechanism of neuropathic pain. However, directly blocking NMDAR or its downstream signaling, interaction between postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS), causes analgesic tolerance, mainly due to GABAergic disinhibition. The aim of this study is to explore the possibility of preventing analgesic tolerance through co-targeting NMDAR downstream signaling and γ-aminobutyric acid type A receptors (GABAARs). Methods: Mechanical/thermal hyperalgesia were quantified to assess analgesic effects. Miniature postsynaptic currents were tested by patch-clamp recording to evaluate synaptic transmission in the SDH. GABA-evoked currents were tested on HEK293 cells expressing different subtypes of recombinant GABAARs to assess the selectivity of (+)-borneol and ZL006-05. The expression of α2 and α3 subunits of GABAARs and BDNF, and nNOS-PSD-95 complex levels were analyzed by western blotting and coimmunoprecipitation respectively. Open field test, rotarod test and Morris water maze task were conducted to evaluate the side-effect of ZL006-05. Results: (+)-Borneol selectively potentiated α2- and α3-containing GABAARs and prevented the disinhibition of laminae I excitatory neurons in the SDH and analgesic tolerance caused by chronic use of ZL006, a nNOS-PSD-95 blocker. A dual-target compound ZL006-05 produced by linking ZL006 and (+)-borneol through an ester bond blocked nNOS-PSD-95 interaction and potentiated α2-containing GABAAR selectively. Chronic use of ZL006-05 did not produce analgesic tolerance and unwanted side effects. Conclusion: By targeting nNOS-PSD-95 interaction and α2-containing GABAAR simultaneously, chronic use of ZL006-05 can avoid analgesic tolerance and unwanted side effects. Therefore, we offer a novel candidate drug without analgesic tolerance for treating neuropathic pain.


Assuntos
Analgésicos/farmacologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Neuralgia/tratamento farmacológico , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores de GABA-A/metabolismo , Ácidos Aminossalicílicos/farmacologia , Animais , Benzilaminas/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Manejo da Dor/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
J Neurosci ; 41(11): 2523-2539, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33500273

RESUMO

Stress-induced depression is common worldwide. NAc, a "reward" center, is recently reported to be critical to confer the susceptibility to chronic social defeat stress (CSDS) and the depression-related outcome. However, the underlying molecular mechanisms have not been well characterized. In this study, we induced depression-like behaviors with CSDS and chronic mild stress in male mice to mimic social and environmental factors, respectively, and observed animal behaviors with social interaction test, tail suspension test, and sucrose preference test. To determine the role of neuronal nitric oxide synthase (nNOS) and its product nitric oxide (NO), we used brain region-specifically nNOS overexpression and stereotaxic injection of NO inhibitor or donor. Moreover, the downstream molecular cyclin-dependent kinase 5 (CDK5) was explored by conditional KO and gene mutation. We demonstrate that nNOS-implicated mechanisms in NAc shell (NAcSh), including increased cell number, increased protein expression levels, and increased specific enzyme activity, contribute the susceptibility to social defeat and the following depression-like behaviors. NAcSh nNOS does not directly respond to chronic mild stress but facilitates the depression-like behaviors. The increased NAcSh nNOS expression after CSDS leads to the social avoidance and depression-like behaviors in defeated mice, which is dependent on the nNOS enzyme activity and NO production. Moreover, we identify the downstream signal in NAcSh. S-nitrosylation of CDK5 by NO contributes to enhanced CDK5 activity, leading to depression-related behaviors in susceptible mice. Therefore, NAcSh nNOS mediates susceptibility to social defeat stress and the depression-like behaviors through CDK5.SIGNIFICANCE STATEMENT Stress-induced depression is common worldwide, and chronic exposure to social and psychological stressors is important cause of human depression. Our study conducted with chronic social defeat stress mice models demonstrates that nNOS in NAcSh is crucial to regulate the susceptibility to social defeat stress and the following depression-like behaviors, indicating NAcSh nNOS as the responding molecule to social factors of depression. Moreover, we discover the downstream mechanism of NAcSh nNOS in mediating the susceptibility is NO and S-nitrosylation of CDK5. Thus, NAcSh nNOS mediates susceptibility to social defeat stress through CDK5 is a potential mechanism for depression, which may interpret how the brain transduces social stress exposure into depression.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Accumbens/metabolismo , Derrota Social , Estresse Psicológico/metabolismo , Animais , Masculino , Camundongos
14.
Laryngoscope ; 131(2): 319-325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32521054

RESUMO

OBJECTIVES: To evaluate the efficacy and safety of the Shikani optical stylet (SOS) versus fiberoptic bronchoscope (FOB) for awake nasal intubation in head and neck surgery patients with an anticipated difficult airway. STUDY DESIGN: Prospective randomized clinical trial. METHODS: This study involved 50 adult patients scheduled for elective head and neck surgery and presented with an anticipated difficult airway. Patients planned for awake nasotracheal intubation were randomly divided into two groups: FOB (n = 25) and SOS (n = 25). Patients were intubated under local anesthesia and sedation using the randomly assigned intubation device by anesthetists proficient in both airway devices. The time to successful intubation was regarded as the primary endpoint. RESULTS: The median time (interquartile range) to tracheal intubation in the FOB group was 74 seconds (57-108) and 38 seconds (27-60) in the SOS group (P < .001). Intubation success rates on the first attempt in the FOB and SOS groups were 96% and 92%, respectively (P > .999). Airway assisted maneuvers were required in six (24%) SOS intubations compared to 21 (84%) FOB intubations (P < .001). There were no significant differences between the groups in the incidences of oxygen desaturation and postoperative complications related to intubation. CONCLUSION: Compared to the FOB group, awake nasal intubation in the SOS group required significantly less time and fewer airway-assisted maneuvers on adult head and neck surgery patients with anticipated difficult airway. LEVEL OF EVIDENCE: 2 Laryngoscope, 131:319-325, 2021.


Assuntos
Intubação Intratraqueal/instrumentação , Procedimentos Cirúrgicos Otorrinolaringológicos/instrumentação , Adulto , Idoso , Anestesia Local , Broncoscopia , Procedimentos Cirúrgicos Eletivos , Feminino , Tecnologia de Fibra Óptica , Humanos , Intubação Intratraqueal/métodos , Masculino , Pessoa de Meia-Idade , Duração da Cirurgia , Procedimentos Cirúrgicos Otorrinolaringológicos/métodos , Estudos Prospectivos , Resultado do Tratamento , Vigília
15.
Cereb Cortex ; 31(3): 1707-1718, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188393

RESUMO

Posttraumatic stress disorder subjects usually show impaired recall of extinction memory, leading to extinguished fear relapses. However, little is known about the neural mechanisms underlying the impaired recall of extinction memory. We show here that the activity of dorsal hippocampus (dHPC) to infralimbic (IL) cortex circuit is essential for the recall of fear extinction memory in male mice. There were functional neural projections from the dHPC to IL. Using optogenetic manipulations, we observed that silencing the activity of dHPC-IL circuit inhibited recall of extinction memory while stimulating the activity of dHPC-IL circuit facilitated recall of extinction memory. "Impairment of extinction consolidation caused by" conditional deletion of extracellular signal-regulated kinase 2 (ERK2) in the IL prevented the dHPC-IL circuit-mediated recall of extinction memory. Moreover, silencing the dHPC-IL circuit abolished the effect of intra-IL microinjection of ERK enhancer on the recall of extinction memory. Together, we identify a dHPC to IL circuit that mediates the recall of extinction memory, and our data suggest that the dysfunction of dHPC-IL circuit and/or impaired extinction consolidation may contribute to extinguished fear relapses.


Assuntos
Extinção Psicológica/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico , Masculino , Camundongos Endogâmicos C57BL , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
16.
Neurosci Bull ; 37(2): 229-241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33180308

RESUMO

The paraventricular nucleus of the thalamus (PVT), which serves as a hub, receives dense projections from the medial prefrontal cortex (mPFC) and projects to the lateral division of central amygdala (CeL). The infralimbic (IL) cortex plays a crucial role in encoding and recalling fear extinction memory. Here, we found that neurons in the PVT and IL were strongly activated during fear extinction retrieval. Silencing PVT neurons inhibited extinction retrieval at recent time point (24 h after extinction), while activating them promoted extinction retrieval at remote time point (7 d after extinction), suggesting a critical role of the PVT in extinction retrieval. In the mPFC-PVT circuit, projections from IL rather than prelimbic cortex to the PVT were dominant, and disrupting the IL-PVT projection suppressed extinction retrieval. Moreover, the axons of PVT neurons preferentially projected to the CeL. Silencing the PVT-CeL circuit also suppressed extinction retrieval. Together, our findings reveal a new neural circuit for fear extinction retrieval outside the classical IL-amygdala circuit.


Assuntos
Núcleo Central da Amígdala , Medo , Extinção Psicológica , Córtex Pré-Frontal , Tálamo
17.
Elife ; 92020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966209

RESUMO

The spindle shows remarkable diversity, and changes in an integrated fashion, as cells vary over evolution. Here, we provide a mechanistic explanation for variations in the first mitotic spindle in nematodes. We used a combination of quantitative genetics and biophysics to rule out broad classes of models of the regulation of spindle length and dynamics, and to establish the importance of a balance of cortical pulling forces acting in different directions. These experiments led us to construct a model of cortical pulling forces in which the stoichiometric interactions of microtubules and force generators (each force generator can bind only one microtubule), is key to explaining the dynamics of spindle positioning and elongation, and spindle final length and scaling with cell size. This model accounts for variations in all the spindle traits we studied here, both within species and across nematode species spanning over 100 million years of evolution.


Assuntos
Caenorhabditis elegans , Tamanho Celular , Microtúbulos , Fuso Acromático , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Evolução Molecular , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Fenótipo , Fuso Acromático/química , Fuso Acromático/genética , Fuso Acromático/metabolismo
18.
Neurotherapeutics ; 17(3): 1016-1030, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632774

RESUMO

Neuropathic pain is usually persistent due to maladaptive neuroplasticity-induced central sensitization and, therefore, necessitates long-term treatment. N-methyl-D-aspartate receptor (NMDAR)-mediated hypersensitivity in the spinal dorsal horn represents key mechanisms of central sensitization. Short-term use of NMDAR antagonists produces antinociceptive efficacy in animal pain models and in clinical practice by reducing central sensitization. However, how prolonged use of NMDAR antagonists affects central sensitization remains unknown. Surprisingly, we find that prolonged blockage of NMDARs does not prevent but aggravate nerve injury-induced central sensitization and produce analgesic tolerance, mainly due to reduced synaptic inhibition. The disinhibition that results from the continuous decrease in the production of nitric oxide from neuronal nitric oxide synthase, downstream signal of NMDARs, leads to the reduction of GABAergic inhibitory synaptic transmission by upregulating brain-derived neurotrophic factor expression and inhibiting the expression and function of potassium-chloride cotransporter. Together, our findings suggest that chronic blockage of NMDARs develops analgesic tolerance through the neuronal nitric oxide synthase-brain-derived neurotrophic factor-potassium-chloride cotransporter pathway. Thus, preventing the GABAergic disinhibition induced by nitric oxide reduction may be necessary for the long-term maintenance of the analgesic effect of NMDAR antagonists.


Assuntos
Analgésicos/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Neurônios GABAérgicos/metabolismo , Neuralgia/metabolismo , Óxido Nítrico Sintase Tipo I/deficiência , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Analgésicos/efeitos adversos , Animais , Maleato de Dizocilpina/administração & dosagem , Maleato de Dizocilpina/efeitos adversos , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/fisiologia , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Neurônios GABAérgicos/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neuralgia/tratamento farmacológico , Neuralgia/genética , Óxido Nítrico/deficiência , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo I/genética , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
19.
Proc Natl Acad Sci U S A ; 117(26): 14636-14641, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541064

RESUMO

Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.


Assuntos
Temperatura Corporal/fisiologia , Divisão Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Pontos Quânticos/química , Termometria , Animais , Caenorhabditis elegans/embriologia , Nanodiamantes/química , Termometria/instrumentação , Termometria/métodos
20.
Nat Commun ; 11(1): 2501, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427844

RESUMO

Anxiety is common in patients suffering from chronic pain. Here, we report anxiety-like behaviors in mouse models of chronic pain and reveal that nNOS-expressing neurons in ventromedial prefrontal cortex (vmPFC) are essential for pain-induced anxiety but not algesia, using optogenetic and chemogenetic strategies. Additionally, we determined that excitatory projections from the posterior subregion of paraventricular thalamic nucleus (pPVT) provide a neuronal input that drives the activation of vmPFC nNOS-expressing neurons in our chronic pain models. Our results suggest that the pain signal becomes an anxiety signal after activation of vmPFC nNOS-expressing neurons, which causes subsequent release of nitric oxide (NO). Finally, we show that the downstream molecular mechanisms of NO likely involve enhanced glutamate transmission in vmPFC CaMKIIα-expressing neurons through S-nitrosylation-induced AMPAR trafficking. Overall, our data suggest that pPVT excitatory neurons drive chronic pain-induced anxiety through activation of vmPFC nNOS-expressing neurons, resulting in NO-mediated AMPAR trafficking in vmPFC pyramidal neurons.


Assuntos
Dor Crônica/enzimologia , Dor Crônica/psicologia , Núcleos da Linha Média do Tálamo/enzimologia , Neurônios/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Córtex Pré-Frontal/enzimologia , Animais , Ansiedade , Comportamento Animal , Dor Crônica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleos da Linha Média do Tálamo/citologia , Neurônios/citologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Córtex Pré-Frontal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...